Transient Membrane Localization of SPV-1 Drives Cyclical Actomyosin Contractions in the C. elegans Spermatheca
نویسندگان
چکیده
BACKGROUND Actomyosin contractility is the major cellular force driving changes in cell and tissue shape. A principal regulator of contractility is the small GTPase RhoA. External mechanical forces have been shown to impact RhoA activity and cellular contractility. However, the mechanotransduction pathway from external forces to actomyosin contractility is poorly understood. RESULTS Here, we show that actomyosin contractility in the C. elegans spermatheca is under control of RHO-1/RhoA, which, in turn, is regulated by the F-BAR and RhoGAP protein SPV-1. In the relaxed spermatheca, SPV-1 localizes through its F-BAR domain to the apical membrane, where it inhibits RHO-1/RhoA activity through its RhoGAP domain. Oocyte entry forces the spermatheca cells to stretch, and subsequently SPV-1 detaches from the membrane, permitting RHO-1 activity to increase. The increase in RHO-1 activity facilitates spermatheca contraction and expulsion of the newly fertilized embryo into the uterus, leading to relaxation of the spermatheca, SPV-1 membrane localization, and initiation of a new cycle. CONCLUSIONS Our results demonstrate how transient membrane localization of a novel F-BAR domain, likely via specific binding to curved membranes, coupled to a RhoGAP domain, can provide feedback between a mechanical signal (membrane stretching) and actomyosin contractility. We anticipate this to be a widely utilized feedback mechanism used to balance actomyosin forces in the face of externally applied forces, as well as intrinsic processes involving cell deformation, from single-cell migration to tissue morphogenesis.
منابع مشابه
Mechanotransduction: Feeling the Squeeze in the C. elegans Reproductive System
A new study reports that the RhoGAP SPV-1 senses membrane curvature and cell stretch in the Caenorhabditis elegans spermatheca. Without SPV-1, the cells of the spermatheca are hypercontractile, leading to deformation and rapid ejection of the fertilized eggs. The spermatheca may provide a paradigm for understanding how cells detect mechanical stimuli in vivo.
متن کاملMyosin activity drives actomyosin bundle formation and organization in contractile cells of the C. elegans spermatheca
Stress fibers, contractile actomyosin bundles, are important for cellular force production and adaptation to physical stress and have been well-studied within the context of cell migration. However, less is known about actomyosin bundle formation and organization in vivo and in specialized contractile cells, such as smooth muscle and myoepithelial cells. The Caenorhabditis elegans spermatheca i...
متن کاملMyosin activity drives actomyosin bundle formation and organization in contractile cells of the Caenorhabditis elegans spermatheca
Stress fibers-contractile actomyosin bundles-are important for cellular force production and adaptation to physical stress and have been well studied within the context of cell migration. However, less is known about actomyosin bundle formation and organization in vivo and in specialized contractile cells, such as smooth muscle and myoepithelial cells. The Caenorhabditis elegans spermatheca is ...
متن کاملINF2‐ and FHOD‐related formins promote ovulation in the somatic gonad of C. elegans
Formins are regulators of actin filament dynamics. We demonstrate here that two formins, FHOD-1 and EXC-6, are important in the nematode Caenorhabditis elegans for ovulation, during which actomyosin contractions push a maturing oocyte from the gonad arm into a distensible bag-like organ, the spermatheca. EXC-6, a homolog of the disease-associated mammalian formin INF2, is highly expressed in th...
متن کاملFilamin and Phospholipase C-ε are required for calcium signaling in the Caenorhabditis elegans Spermatheca
The Caenorhabditis elegans spermatheca is a myoepithelial tube that stores sperm and undergoes cycles of stretching and constriction as oocytes enter, are fertilized, and exit into the uterus. FLN-1/filamin, a stretch-sensitive structural and signaling scaffold, and PLC-1/phospholipase C-ε, an enzyme that generates the second messenger IP3, are required for embryos to exit normally after fertil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 25 شماره
صفحات -
تاریخ انتشار 2015